
J
H
E
P
0
3
(
2
0
0
6
)
0
7
2

Published by Institute of Physics Publishing for SISSA

Received: December 19, 2005

Accepted: March 3, 2006

Published: March 21, 2006

E11, ten forms and supergravity

Peter West

Department of Mathematics, King’s College

London WC2R 2LS, U.K.

E-mail: pwest@mth.kcl.ac.uk

Abstract: We extend the previously given non-linear realisation of E11 for the decom-

position appropriate to IIB supergravity to include the ten forms that were known to be

present in the adjoint representation. We find precise agreement with the results on ten

forms found by closing the IIB supersymmetry algebra.

Keywords: M-Theory, Supergravity Models, Space-Time Symmetries.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep032006072/jhep032006072.pdf

mailto:pwest@mth.kcl.ac.uk
http://jhep.sissa.it/stdsearch


J
H
E
P
0
3
(
2
0
0
6
)
0
7
2

Long ago it was realised that the maximal supergravity theories in ten and eleven

dimensions [1]–[4] when dimensionally reduced on a torus lead to maximal supergravity

theories which possessed unexpected symmetries. In particular, the eleven dimensional

supergravity theory when dimensionally reduced on a torus of dimension n possess an En

symmetry for n ≤ 8 [5], with some evidence [6] for an E9 symmetry when reduced to two

dimensions and it has been conjectured [7] to have a E10 symmetry in one dimension. The

scalar fields which are created by the dimensional reduction process belong to a coset, or

non-linear realisation, based on an En algebra with the local sub-algebra being the Cartan

involution invariant sub-algebra.

In more recent years, it was realised [8] that the entire bosonic sector of of eleven

dimensional supergravity, including gravity, could be formulated as a non-linear realisa-

tion [4]. In this construction, the presence of gravity requires an A10 algebra together with

other generators, which transform as tensors under this A10 algebra, and have non-trivial

commutation relations amongst themselves that are determined by the dynamics of the

theory. When formulated in this way it becomes apparent that the eleven dimensional su-

pergravity theory may be part of a larger theory, and assuming that this is a non-linearly

realised Kac-Moody algebra, one finds that it must contain a rank eleven algebra called

E11 [9]. A similar chain of argument applies to the bosonic sectors of the IIA and IIB su-

pergravity theories which are also thought to be part of larger theories that are non-linear

realisations of E11 [9, 10].

Similar ideas were subsequently taken up by the authors of reference [14] who consid-

ered the idea that the eleven dimensional supergravity theory is a non-linear realisation of

the E10 sub-algebra of E11. However, these authors proposed that space-time was in fact

contained within E10. A hybrid proposal based on E11, but adopting similar ideas to the

latter for space-time was also given [15].

We invite the reader to draw the Dynkin diagram of E11 by drawing ten nodes con-

nected together by a single horizontal line. We label these nodes from left to right by the

integers from one to ten and then add a further node, labeled eleven, above node eight

and attached by a single vertical line. The latter node is sometimes called the exceptional

node. We refer the reader to earlier works of the author for a brief review of Kac-Moody

algebras useful for the considerations of this paper.

The eleven dimensional, IIA and IIB theories are thought to all have an underlying E11

symmetry which is non-linearly realised with the local sub-algebra being the Cartan involu-

tion invariant sub-algebra. As a result, in the non-linear realisation the group element con-

tains positive root and Cartan sub-algebra generators whose coefficients turn out to be the

fields of the theory. The gravity sector is associated with a AD−1 type sub-algebra, where

D is the space-time dimension of the theory, which arises as a sub-Dynkin diagram that

contains node one and a set of continuously connected nodes of the E11 Dynkin diagram.

This set of nodes is referred to as the gravity line. The eleven dimensional, IIA and IIB the-

ories are distinguished by their different gravity sub-algebras, or gravity lines. The eleven

dimensional theory must possess an A10 gravity algebra and there is only one such algebra

whose gravity line contains all the nodes except node eleven. For this theory it is useful to

classify the E11 algebra in terms of generators that transform under this A10 sub-algebra.
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The IIA and IIB theories are ten dimensional and to find these theories we seek an A9

gravity sub-algebra and so we must choose the gravity line to be a sub-Dynkin diagram

that consist of nine nodes. Looking at the E11 Dynkin diagram there are only two ways to

do this. Starting from the node labeled one we must choose a A9 sub-Dynkin diagram, but

once we get to the junction of the E11 Dynkin diagram, situated at the node labeled 8, we

can continue along the horizontal line with two further nodes taking only the first node to

belong to the A9, or we can find the final A9 node by taking it to be the only node in the

other choice of direction at the junction. These two ways correspond to the IIA and IIB

theories respectively. Hence, in the IIA theory we take the gravity line to be nodes labeled

one to nine inclusive while for the IIB theory the gravity line contains nodes one to eight

and in addition node eleven [9, 10]. For these two theories it is useful to classify the E11

algebra in terms of their respective A9 sub-algebras, but as these are different embeddings

in E11 we find different field contents.

While the number and type of generators is not known for any Kac-Moody algebra

one can find them at low levels. Every generator corresponds to a root in the Kac-Moody

algebra which can be written in terms of an integer sum of the simple roots. By definition a

Lorentzian Kac-Moody algebra is one which possess a Dynkin diagram which has one node

whose deletion leads to a Dynkin diagram that corresponds to finite algebra together with

possibly only one affine algebra [16]. For the E11 Dynkin diagram we may delete node eleven

to obtain an A10 sub-algebra and so E11 is a Lorentzian Kac-Moody algebra. The advantage

of such algebra is that one can study its properties in terms of the remaining sub-algebra,

or algebras, whose representations are well known. In particular we may decompose the

Lorentzian algebra, meaning its adjoint representation, into representations of the sub-

algebra. The representations of the latter are determined by their highest weights. A given

highest weight will appear in a particular root of the Lorentzian algebra and the number of

times the roots of the deleted nodes appear in this root are called the levels and can be used

to label the representations of the sub-algebra that appear in the decomposition [14, 17].

For example, deleting node eleven in the E11 Dynkin diagram we obtain an A10 sub-algebra

whose decomposition with respect to which is appropriate to the eleven dimensional theory.

Carrying this out, one finds at low levels that the algebra contains the generators of A10,

and then a three form and six form generator as well as a generator with eight indices anti-

symmetrised and a further index. In the non-linear realisation these generators correspond

to gravity, the three form gauge field and its dual, and dual graviton respectively, which

is the field content of the eleven dimensional supergravity theory [9]. There are, of course,

an infinite number of generators, and so fields, at higher levels.

By deleting nodes nine and ten we decompose the E11 algebra with respect to an A9

algebra that is the one appropriate to the IIB theory. The representations are labeled by

two integers corresponding to the nodes deleted and are listed in the table on page 27 of

reference [12]. As first noticed in reference [10] one finds at low levels a set of generators

that correspond precisely to the field content of the IIB supergravity theory and their duals.

Indeed, if one includes the dual of gravity, it is very striking how this accounts for the first

nine entries of the table. However, there are at higher levels an infinite number of other

fields. Among these one finds an additional eight form which, together with the earlier
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ones form an SU(1,1) triplet. One also finds some ten forms which form a doublet and

quadruplet of SU(1,1) [12]. The triplet of eight forms was first observed in reference [18].

Although the ten form fields have no dynamics they couple to space-filling branes which are

dynamical. Their existence was first considered as a result of a string world-sheet analysis

of D branes considerations [21]. Two ten forms were also observed in the context of IIB

supergravity in reference [23], but it was shown in reference [24] that these could not be a

doublet of SU(1,1). The eight and ten form fields fields have more subsequently been seen

from an entirely different view point. The authors of reference [11] considered what eight

and ten forms could be added to the IIB theory such that the supersymmetry algebra still

closed. They found precisely the eight and ten forms predicted by E11. These authors

also found, using the same calculation, the gauge transformations of all the gauge fields

including the eight and ten form fields and constructed some gauge invariant quantities.

In this paper we extend the calculation of reference [10] to include one further eight

form and the ten forms and compute the E11 invariant Cartan forms constructed from

the gauge fields. We find that these are in precise agreement with gauge invariant objects

computed using the closure of the supersymmetry algebra in reference [11].

The Kac-Moody algebra E10 considered in reference [14] does not possess [20] the ten

forms that occur in the E11 theory and whose presence has been confirmed in the IIB

supergravity theory.

As explained above, the IIB theory emerges from the E11 algebra by taking the decom-

position with respect to a particular A9 algebra, hence forth denoted Â9, whose Dynkin

diagram is embedded in that of E11 by taking nodes labeled one to eight and node eleven.

The latter is the so called exceptional node of the algebra. Carrying out the non-linear

realisation one finds that the Â9 algebra is associated with the gravity fields of the IIB the-

ory and we denote its generators by K̂a
b. The nodes not included in the Â9 sub-algebra,

or gravity line, are the nodes labeled nine and ten of the E11 Dynkin diagram which are

therefore the ones that must be deleted to find the Â9 decomposition of the E11 algebra.

The Â9 representations in the decomposition are then labeled by the levels associated with

these two nodes, that is the number of times these two roots occur in the E11 root that

contains the Â9 highest weight of the representation under consideration. The decompo-

sition with this labeling is given in table on page 27 in reference [12]. The E11 algebra is

generated by the Chevalley generators Ha, Ea, Fa, a = 1, . . . , 11. The SU(1,1) invariance of

the IIB theory is easy to see from the E11 view point as it is just the A1 algebra associated

with node ten. As this is not directly connected to the gravity line of the IIB theory it

is an internal symmetry . Thus the SU(1,1) is generated by the H10, E10 and F10 gener-

ators. In fact, one can just delete node nine as then the E11 Dynkin diagram splits into

two pieces corresponding to Â9 and A1 which classify the representations corresponding

to the deletion of this node. It is straightforward to collect the generators in the table of

reference [12] at a given level corresponding to the root α9 into multiplets of A1.

When constructing the E11 non-realisation the E11 group element contains the Cartan

sub-algebra elements and the positive root generators whose coefficients are the fields of

the theory. However, the description of the E11 algebra from the mathematical view point

does not lead to the usual fields that appear in the supergravity theories. The latter, that
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is the physical fields, arise as coefficients of linear combinations of the generators used in

the mathematical formulation of the E11 algebra. In particular, the Cartan sub-algebra of

E11 contains the generators Ha, a = 1, . . . , 11 when formulated in terms of its Chevalley

basis. Their relation to the generators associated to the fields of the IIB theory, which are

given a hat, is given by [10]

Ha = K̂a
a − K̂a+1

a+1, a = 1, . . . , 8, H9 = K̂9
9 + K̂10

10 + R̂ −
1

4

10
∑

a=1

K̂a
a,

H10 = −2R̂1, H11 = K̂9
9 − K̂10

10 (1)

The generator R̂1 will turn out to be associated with the dilaton σ of the IIB theory in the

non-linear realisation as traditionally normalised.

The positive root Chevalley generators Ea, a = 1, . . . , 11 of E11 are given by [10]

Ea = K̂a
a+1, a = 1, . . . 8, E9 = R̂910

1 , E10 = R̂2, E11 = K̂9
10. (2)

where the generators R̂ab
1 and R̂2 are associated with the NS-NS two form and the axion,

χ̂ of the IIB theory respectively. The last equation reflects the fact that the node labeled

eleven is the last node in the IIB gravity line, but is the exceptional node of the E11 algebra.

The E11 algebra is just multiple commutators of the Ea, and separately the Fa gener-

ators, subject to the Serre relations. However, it is more efficient to construct the algebra

using the list of generators with the Â9 decomposition given in the table on page 27 of

reference [12] and then ensuring that the Jacobi identities are satisfied. This was done for

all the generators which in the non-linear realisation are associated with the fields of the

IIB supergravity theory and their duals in reference [10] and extended to higher levels in

reference [13]. This construction also included the generator corresponding to the the dual

of the gravity field, two eight form generators, which are duals of the scalar fields and in

addition one of the ten form generators. Examining the table of reference [12], we find that

it contains at low levels three eight forms which make up a triplet as well as a doublet and

quadruplet of ten forms. We now extend this construction of the algebra to include the

third of the eight form generators and all the other ten form generators. It will be advan-

tageous to do this in such a way that the A1 character of the fields are manifest. Since the

part of the theory we wish to test concerns the gauge fields we will not explicitly discuss

the generators K̂a
b of the Â9 and set to zero the generator Ra1...a7,b, corresponding to the

dual of gravity, when it appears on the right hand side of the commutators. Considering

IIB table of reference [12], and taking the last comment into account, we introduce the

positive root generators of E11 not in the Cartan sub-algebra in the form

E10, T
a1a2
α , T a1...a4 , T a1...a6

α , T a1...a8

αβ , T a1...a10

αβγ , T a1...a10
α , . . . (3)

The E11 algebra for these generators is given by

[T a1a2
α , T a3a4

β ] = −εαβT a1...a4 , [T a1a2
α , T a3...a6 ] = 4T a1...a6

α , [T a1a2
α , T a3...a8

β ] = −T a1...a8

αβ

[T a1a2
α , T a1...a8

βγ ] = T a1...a10

αβγ , [T a1...a4 , T b1...b4 ] = 0, [T a1...a6
α , T b1...b4 ] = 0 . (4)
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The SU(1,1) properties of the generators are given by

[E10, T
a1...ap

1...112...2] = i1T
a1...ap

1...122...2 (5)

where i1 is the number of one indices and the generator on the right-hand side of the

commutator has one more 2 index than that in the commutator. We also have

[H10, T
a1...ap
α1...αr ] = (2(α1 + . . . + αr) − 3r)T

a1...ap
α1...αr . (6)

In deriving these equations we have used that E10 acts as a lower operator for the repre-

sentations of SU(1,1), taking T a1a2

1 = Ra1a2

1 , that is T 910
1 = E9, and normalising T a1a2

2 such

that [E10, T
a1a2

1 ] = T a1a2

2 . Then using equations (5) and (6) and the Jacobi identities, and

the defining relations [H10, E10] = 2E10 and [H10, E9] = −E9 we find the above equations.

The relation to the generators used in references [10] and [13] is given by

T a1a2
α = Ra1a2

α , T a1...a4 = Ra1...a4

2 , T a1...a6
α = −εαβRa1...a6

β , T a1...a8

11 = Ra1...a8

2 ,

T a1...a8

12 = −
1

2
Ra1...a8

1 , T a1...a8

22 = −Sa1...a8

2 , T a1...a10

111 = Ra1...a10

2 (7)

from which one can verify that, in the absence of one of the eight form generators and

three of the ten form generators, the above commutators agree with those of references [10]

and [13]. Although it may appear that at first sight the generator T a1...a10
α can appear on

the right hand side of lower level commutators it turns out that this is forbidden by the

Jacobi identities if we set to zero the generators associated with the gravity sector. Clearly,

as we are dealing with a Kac-Moody, this generator will have to appear as a result of some

lower level commutators in the full theory.

The non-linear realisation is by definition a theory which is invariant under g → g0gh

where g0 is a constant E11 transformations and H is an element of the local sub-algebra

which in this case is the Cartan involution invariant sub-algebra. We may use the latter to

gauge away all the negative root terms in the expression for the group element g. As such

to construct the non-linear realisation we consider the E11 group element given by

g = e
Bα

a1...a10
10!

T
a1...a10
α e

B
αβγ
a1...a10

10!
T

a1...a10
αβγ e

B
αβ
a1...a8

8!
T

a1...a8
αβ e

Bα
a1...a6

6!
T

a1...a6
α

.e
Ba1...a4

4!
T a1...a4

e
Bα

a1a2
2!

T
a1a2
α gA1

(8)

where

gA1
= eχE10eφH10 . (9)

We have, as previously stated, omitted the gravity sector. The Cartan forms are invariant

under g0 transformations and being part of the Lie algebra are of the form

g−1∂µg = g−1
A1

(
G̃α

µa1...a10

10!
T a1...a10

α +
G̃

αβγ
µa1...a10

10!
T a1...a10

αβγ +
G̃

αβ
µa1...a8

8!
T a1...a8

αβ +
G̃α

µa1...a6

6!
T a1...a6

α

+
G̃µa1...a4

4!
T a1...a4 +

G̃α
µa1a2

2!
T a1a2

α )gA1
. (10)
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Using equation (4) it is straightforward to find that

G̃α
µa1a2

= ∂µBα
a1a2

, G̃µa1...a4
= ∂µBa1...a4

+ 3εαβBα
a1a2

∂µBβ
a3a4

,

G̃α
µa1...a6

= ∂µBα
a1...a6

− 6.5.2Bα
a1a2

(∂µBa3...a6
+ εγδB

γ
a3a4

∂µBδ
a5a6

),

G̃αβ
µa1...a8

= ∂µBαβ
a1...a6

+

+ 7.4B
(α
[a1a2

(∂µB
β)
a3...a8] − 6.5Bβ)

a3a4
∂µBa5...a8] − 3.5Bβ)

a3a4
εγδB

γ
a5a6

∂µBδ
a7a8])

G̃αβγ
µa1...a10

= ∂µBαβγ
a1...a10

− 9.5B
(α
[a1a2

(∂µBβγ)
a3...a10

+ 2.7Bβ
a3a4

∂µB
γ)
a5...a10]

−8.7.5Bβ
a3a4

Bγ)
a5a6

∂µBa7...a10] − 7.6.2Bβ
a3a4

Bγ)
a5a6

εεδB
ε
a7a8

∂µBδ
a9a10])

G̃α
a1...a10

= ∂µBα
a1...a10

. (11)

We denote the result of carrying out the evaluation of the final SU(1,1) gA1
factors by

g−1∂µg =
Gα

µa1...a10

10!
T a1...a10

α +
G

αβγ
µa1...a10

10!
T a1...a10

αβγ +
G

αβ
µa1 ...a8

8!
T a1...a8

αβ +
Gα

µa1...a6

6!
T a1...a6

α

+
Gµa1...a4

4!
T a1...a4 +

Gα
µa1a2

2!
T a1a2

α + S1
µẼ10 + S2

µH10 . (12)

Using equations (5) and (6) one finds that

Gα
µa1a2

= G̃β
µa1a2

Uβ
α, Gα

µa1...a6
= G̃β

µa1...a6
Uβ

α, Gα
µa1...a4

= G̃α
µa1...a4

(13)

Gαβ
µa1...a8

= G̃δε
µa1...a6

Uδ
αUε

β, Gαβγ
µa1...a10

= G̃δετ
µa1...a10

Uδ
αUε

βUτ
γ , Gα

µa1...a6
= G̃β

µa1...a6
Uβ

α

where

U =

(

eφ −χe−φ

0 e−φ

)

. (14)

The last two terms in equation (12) are just the standard vierbein and connection on the

SU(1,1)/U(1) coset

The Cartan forms are inert under rigid E11 transformations, but transform under the

local sub-algebra. They do not contain the curl of the gauge fields and so are not invari-

ant under gauge transformations. However, a rigid E11 transformation for a particular

generator shifts the field corresponding to that generator as well as giving field depen-

dent terms. This transformation can be thought of as a particular gauge transformation.

For example under a rigid E11 transformation corresponding to the generator T a1a2
α we

find that δBα
a1a2

= aα
a1a2

+ . . . where aα
a1a2

is a constant. This is a gauge transformation

δBα
a1a2

= 2∂[a1
λα

a2] + . . . with gauge parameter Λα
a = 1

2aα
abx

b. The Cartan forms of equa-

tion (11) are used to construct the equations of motion, but to find the field equations of

IIB supergravity [10] one used only a sub-set of all the Cartan forms and for the fields with

completely anti-symmetrised indices this was the totally anti-symmetrised Cartan forms,

that is the field strengths given by

Fα1...αr
a1...ap+1

= (p + 1)Gα1 ...αr

[a1...ap+1] . (15)

The µ index is converted to a tangent index using the delta symbol as we are taking the

gravity sector to be trivial. One way to view this enforced anti-symmetrisation is to consider

demanding that the theory also be invariant under the simultaneous non-linear realisation
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of the conformal group. For gravity alone this does pick out particular combinations

of the AD−1 Cartan forms and one finds it leads uniquely to Einstein’s theory [19]. Thus

although one started with rigid transformations one ended up with local general coordinate

transformations. In fact, the closure of translations and AD−1 transformations leads to

general coordinate transformations. For gauge fields it is also true that the closure of rigid

transformations arising from a non-linear realisation and conformal transformations lead

to local symmetries, namely gauge transformations [9]. When the maximal supergravity

theories in ten and eleven transformations were found using the E11 non-linear realisation

it was also combined with the conformal group [9, 10]. Should one not carry out this latter

step then one would find the correct equations of motion, but some constant would have

to be chosen appropriately. The result of the closure of conformal transformations and E11

transformations is unexplored, but it does convert all the E11 rigid transformations into

local transformations and so the above rigid transformations into gauge transformations.

We should note that in finding the equations of motion of the maximal supergravities from

the non-linearly E11 in references [9, 10] one only required the local Lorentz part of the local

sub-algebra and it would be very instructive to enforce the rest of the local sub-algebra up

to the level required.

In order to compare the invariant quantities that arise with those in reference [11] we

must carry out a field redefinition. In particular, carrying out the field redefinitions

Cα
a1a2

= Bα
a1a2

, Ca1...a4
= Ba1...a4

, Cα
a1...a6

= Bα
a1...a6

− 5.8Bα
[a1a2

Ba3...a6]

Cαβ
a1...a8

= Bαβ
a1...a8

+ 3.7B
(α
[a1a2

C
β)
a1...a6] + 7.5.4.3B

(α
[a1a2

Bβ)
a3a4

Ba5...a8],

Cαβγ
a1...a10

= Bαβγ
a1...a10

− 9.4B
(α
[a1a2

C
βγ)
a3...a10] + 9.7.5.3B

(α
[a1a2

Bβ
a3a4

C
γ)
a5...a10] +

+16.9.7.5B
(α
[a1a2

Bβ
a3a4

Bγ)
a5a6

Ba7...a10], Cα
a1...a10

= Bα
a1...a10

(16)

the Cartan forms become

G̃α
µa1a2

= ∂µCα
a1a2

, G̃µa1...a4
= ∂µCa1...a4

+ 3εαβCα
[a1a2

G̃
β
µa3a4],

G̃α
µa1...a6

= ∂µCα
a1...a6

− 5.4Cα
[a1a2

G̃µa3...a6] + 8.5G̃α
µ[a1a2

Ca3...a6],

G̃αβ
µa1...a8

= ∂µCαβ
a1...a6

+ 7B
(α
[a1a2

G̃
β)
µa3...a8] − 7.3G̃

(α
µ[a1a2

C
β)
a3...a8]

G̃αβγ
µa1...a10

= ∂µCαβγ
a1...a10

− 9C
(α
[a1a2

G̃
βγ)
µa3...a10] + 9.4G̃(α

µa1a2
C

βγ)
a3...a10]

G̃α
a1...a10

= ∂µCα
µa1...a10

. (17)

The field redefinitions of equation (16) contain all possible terms and the coefficients

are fixed uniquely by requiring that the resulting Cartan forms can be expressed in terms

of the field with p anti-symmetrised indices, the field with p − 2 anti-symmetrised indices,

B
(α
[a1a2

and G̃α
µa1a2

. That this can be done is non-trivial as there are fewer coefficients in the

field redefinition of equation (16) than the number of terms required to be eliminated to

bring the Cartan forms into the above form. The simplest way to see this is to change the

coefficient of the third term in G̃
αβ
µa1...a8 in equation (11) from −6.5 to an arbitrary number

and then carry out the field redefinition to bring it to the required form; one finds that
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this is not possible unless the coefficient is −6.5. Similar restrictions hold for the ten form.

Substituting the expressions of equation (17) into the field strengths of equation (15) we can

compare the results with the field strengths of [11, equation (5.18)–(5.23)]. As we have just

noted to bring the Cartan forms into the required form of equation (17) is already a non-

trivial check. While some terms are not directly comparable due to possible field rescaling

the ratio between the last two terms in G̃α
µa1...a6

, G̃
αβ
µa1...a8 and G̃

αβγ
µa1...a10 are independent of

such transformations. We find that they are precisely those given by the E11 calculation

carried out in this paper. The ratios associated with the six and eight forms were already

contained in reference [10], but their uniqueness was not stressed.

It may seem that the ten form comparison with the two reference [11] is not legitimate

as the field strength in the reference [11] has eleven indices and so each term vanishes

identically. However, as explained in that paper the meaning of the field strength for these

authors is that it invariant under the gauge transformation of the ten forms in any dimen-

sion, hence the unambiguous ratio is between the coefficients in the gauge transformation

of the ten form in [11, equation (5.17)]. It is straightforward to verify that the ten form

Cartan form G̃
αβγ
µa1...a10 of equation (17) is invariant under the rigid transformation

δCαβγ
a1...a10

= aαβγ
a1...a10

− 9.4C
(α
[a1a2

a
βγ)
a3...a10] + 9C

(αβ

[a1...a8
a

γ)
a9a10] + O(C2) . (18)

One could have derived this transformation by carrying out an appropriate rigid g0 trans-

formation on the group element of equation (8) followed by the field redefinition of equa-

tion (16). As explained above we can convert this rigid transformation to a gauge trans-

formation by taking aα1...αr
a1...ap

= p∂[a1
Λα1...αr

a2...ap]. Carrying out this last step and and then

redefining the gauge parameter so as to bring it to the form given in reference [11] we find

that

δCαβγ
a1...a10

= ∂[a1
Λαβγ

a2...a10] − 2F
(αβ

[a1...a9
Λ

γ)
a10] + 8.4.3F

(α
[a1a2a3

Λ
βγ)
a4...a10] + O(C2) . (19)

Comparing with [11, equation (5.17)] we find that the ratio in question between the last two

terms is the same. Clearly, we could have carried out this comparison the other way round

by converting the gauge transformation to the required rigid transformation. This throws

light on the observation in reference [11] that the ten form field strength is invariant in any

dimension, it is not so much to do with a symmetry that can be lifted in dimension, but

more to do with the fact that the Cartan forms for the ten form, which are non-vanishing,

are invariant under rigid E11 transformations.

The Cartan forms are inert under rigid E11 transformations, but transform under the

local sub-algebra as g−1∂µg → h−1g−1∂µgh + h−1∂µh. To form an object that transforms

covariantly we introduce the operation I(A) = Ic(−A) where Ic is the action of the Cartan

involution. It acts on group elements as I(k) = Ic(k
−1 and I(g1g2) = I(g1)I(g2). The

Chevalley generators behave under the Cartan involution as Ic(Ea) = −Fa and Ic(Ha) =

−Ha. Since the local sub-algebra is by definition invariant under the Cartan involution it

follows that I(h) = h−1. As a result, the quantity Uµ = g−1∂µg + I(g−1∂µg) transforms

are Uµ → h−1Uµh while wµ = 1
2 (g−1∂µg − I(g−1∂µg)) behaves like a connection wµ →

h−1wµh + h−1∂µh The equations of motion are to be built from Uµ and wµ so as to
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ensure their invariance under rigid transformations. As we will see below, we will be

interested in first order equations, however, we note that ∂µUν + [wµ, Uν ] is second order

in derivatives, but transforms covariantly. Looking at equation (12) we see that Uµ =

S1
µ(E+F )+2S2

µH10+Gα
µa1a2

(T a1a2
α −Ic(T

a1a2
α ))+. . . where + . . . are higher level generators.

At the lowest level the local sub-algebra contains the Lorentz algebra and the U(1)

sub-algebra of the SU(1,1) algebra. The latter U(1) has the generator E10 − F10 and it

transforms the Cartan forms as δUµ = −a[E10 − F10, Uµ] where a is the local parameter.

Introducing S± = S1 ∓ 2iS2 we find it transforms as δS±± = ±2iaS±±. The transforma-

tions of the other fields are most easily displayed by introducing the analogue to light-cone

coordinates in the SU(1,1) index space;

T a1a2

± =
1

2
(T a1a2

1 ∓ iT a1a2

2 ), T a1...a6

± =
1

2
(T a1...a6

1 ∓ iT a1...a6

2 ),

T a1...a8

±± =
1

4
(T a1...a8

11 − T a1...a8

22 ∓ 2iT a1...a8

12 ), T a1...a8

+− =
1

4
(T a1...a8

11 + T a1...a8

22 ) . (20)

Their U(1) commutators are given by

[E10 − F10, T
a1a2

± ] = ±iT a1a2

± , [E10 − F10, T
a1...a6

± ] = ±iT a1...a6

± ,

[E10 − F10, T
a1...a8

±± ] = ±2iT a1...a8

±± , [E10 − F10, T
a1...a8

+− ] = 0 . (21)

Introducing the analogous basis for the derivatives of the fields that appear in the Cartan

forms

G±
µa1a2

=
1

2
(G1

µa1a2
∓ iG2

µa1a2
), G±

µa1...a6
=

1

2
(G1

µa1 ...a6
∓ iG2

µa1...a6
),

G±±
µa1...a8

=
1

4
(+G11

µa1...a8
− G22

µa1...a8
∓ 2iG12

µa1...a8
), G+−

µa1...a8
=

1

4
(G11

µa1 ...a8
+ G22

µa1...a8
) (22)

and defining the U(1) charge by δ• = [E10−F10, •]−q• where • is any of the above we find,

using equation (20), that the expressions in equation (22) have the U(1) weights ±1,±1,±2

and 0 respectively.

If we assume that the equations of motion for the gauge fields are first order in space-

time derivatives they are then uniquely specified by demanding rigid E11 invariance, which

is guaranteed by using the Cartan forms U , and invariance under the Lorentz and U(1)

part of the local sub-algebra;

F±
a1a2a3

=
1

7!
εa1a2a3

b1...b7F±
b1...b7

, S±±
a =

1

2.9!
εa

b1...b9F±±
b1...b9

, F+−
b1...b9

= 0 . (23)

These are the same equations are found in reference [12], except for the last equation,

which constrains two of the three rank nine field strength to be equal. This last equation

was given in reference [11]. It would be of interest to test the invariance of these equations

at higher levels.

It was know [10] that the E11 non-linear realisation with only two of the three eight

branes and all lower forms lead to the bosonic equations of motion of IIB supergravity.

In this paper we have carried out the E11 non-linear realisation appropriate for the IIB

theory including all the thee eight and ten forms and we have compared our results for the
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ten forms with those of reference [11] and found perfect agreement, including numerical

coefficients. While the calculation given in this paper is just an exercise in E11 algebra, the

results of reference [11] follow from the closure of the IIB supersymmetry algebra. There

would seem to be no overlap between these two methods and so one can regard the results

of this paper as a rather non-trivial check on the E11 conjecture.

We could have carried out the comparison with reference [11] in another way namely

by simply computing the algebra of rigid E11 transformations converted these to gauge

transformations and after a field redefinition carried out a comparison with the gauge

transformation of reference [11]. However, the results will be the same as comparing the

covariant objects as we have done in this paper.

The ten form does not possess a gauge invariant field strength so one might expect

that it has trivial dynamics, nonetheless it does couple, in the supersymmetric Born-Infeld

action, to a space-filling brane. This does have propagating field and as a result the ten

form and its transformation properties do have consequences for the dynamics of the theory.

In this context we note that it has been conjectured that the brane dynamics should also

be E11 invariant [22].

In the table on page 27 of reference [12] the lowest level ten form is at the eighteenth

(eleventh in terms of SU(1,1) multiplets) entry and has level (4,5) and so one has now

confirmed the presence of fields in the adjoint representation of E11 which are relatively

far down the table. It is also interesting to note that the E11 root associated with some of

the ten forms has length squared −2 instead of the usual 2 that occur in finite dimensional

semi-simple Lie algebras and the zeros that occur in affine algebra. A glance at the table

shows that it also possess in the vicinity of the ten forms a SU(1,1) doublet of generators

with the indices Ra1...a9,b and also a doublet of generators of the form Ra1...a8,bc. It would

be interesting to see if these can also be seen from the viewpoint of the IIB supersymmetry

algebra. One could even wonder if one could find the dual gravity field in such a calculation.

As we have noted, at low levels the Borel sub-algebra generators in the decomposition of

E11 to the IIB theory are in a one to one correspondence with the fields of IIB supergravity.

As the latter can be assigned to either the NS-NS or R-R sector of the IIB string theory,

we can assign the low level generators of E11 to either the NS-NS or R-R sector. It was

observed in reference [13] that one can extend this classification to all the generators of

E11 by taking the rule that the commutators admit a grading with the R-R generators

being assigned as odd and NS-NS generators as even. Looking at the table on page 27 of

reference [12] one see that a generator is even (odd), i.e. in the NS-NS (R-R) sector, if its

associated root has an even (odd) number of α10’s in its decomposition into simple roots.

Put another way a generator with root α is in the R-R (NS-NS) sector if α.Λ10 is odd

(even) where Λ10 is the fundamental root associated with node ten. As the roots add in

any commutator this ensures the required graded structure. We note that α.Λ10 is just the

level n10. Given this rule it is easy to assign the ten forms to either the generalised NS-NS

or R-R sector. Looking at the E11 decomposed to the Â9 sub-algebra appropriate to the

IIA theory given in the table on page 26 of reference [12] we find that a similar assignment

is allowed and that the NS-NS sector has an even level corresponding to node ten and the

R-R sector an odd level.
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The eleven dimensional, IIA and IIB theories all are non-linear realisations of E11, but

as there is only one E11 with a standard Chevalley presentation we can made a one to

one correspondence between the three theories [13]. Looking at the table of reference [12]

we see that all the ten forms in the IIB theory arise from the eleven dimensional the-

ory at level four, which is one level above that for the dual graviton at level three and

that below level three one only has the generators corresponding to the fields of eleven

dimensional supergravity. In the IIB table we see that the ten forms have the E11 roots

(1, 2, 3, 4, 5, 6, 7, 8, 5, a, 4) with a = 1, 2, 3, 4. That for a = 2 has multiplicity two and these

are easy to find in the IIA table of reference [12] as the two ten forms in that table at

low level have a root of length squared −2, also with multiplicity two and precisely the

same E11 root. That these ten forms are related by T-duality is known to the authors

of reference [23]. For a = 3 which also has multiplicity two and length squared −2 we

find the same root lower down the table, it corresponds to a IIA generator S̃10 that is the

highest Ã9 states of S̃a, a = 1, . . . , 10. The a = 4 root also appears in the IIA table and

we find it is the highest weight component of the generator R̃(ab). To find the last member

of the IIB quadruplet we use the fact that E10 and F10 raise and lower respectively in

the same SU(1,1) multiplet. In terms of IIA generators we have that E10 = R̃10 where

R̃a corresponds to the rank one gauge field in the IIA supergravity theory. Acting with

F10 = R̃10, the latter being the corresponding negative root, on the a = 2 generator we will

find the a = 1 generator. This corresponds to the commutator [R̃10, R̃
1...10] whose result is

a generator with nine indices R̃1...9. However, this is not a highest Ã9 representation and

so will not occur in the table. The highest weight is R̃2...10 which is obtained by acting

with K̃2
1 + . . .+K̃10

9 which implies we must add the root −(α1 + . . .+α9). As a result, we

find a nine form whose highest weight occurs in E11 as the root (0, 1, 2, 3, 4, 5, 6, 7, 4, 1, 4),

it is just the IIA nine forms R̃a1...a9 which is associated with the massive IIA theory. We

note that the doublet of ten forms in IIB have the same roots as the a = 2, 3 members of

the quadruplet and so correspond to one of the two ten forms and one of the two S̃10’s in

the IIA theory respectively.
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